

SAVITRIBAI PHULE PUNE UNIVERSITY

T. Y. B. Sc. (Computer Science)

 Laboratory Course I

System Programming & Operating
System (CS347)

 Semester II

 (From Academic Year 2015-16)

Roll No. :_____________

Name : ___

College :________________________Division : _______

Academic Year :______________

PROF.DR.VILAS KHARAT
Chairman Board of Study, Computer Science

PROF.DR.SHAILAJA C. SHIRVAIKAR

Co-Ordinator
Member Board of Study, Computer Science

PROF. NILESH B. MAHAJAN

Co-Ordinator

PREPARED BY :

Mr. Nilesh B. Mahajan (Bytco College, NashikRoad)

Mrs. Maduhri S. Ghanekar (Modern College,Pune)

Mr. Madhukar N. Shelar (KTHM College, Nashik)

About The Work Book Objectives –

 The scope of the course.

 Bringing uniformity in the way course is conducted across different Colleges.

 Continuous assessment of the students.

 Providing ready references for students while working in the lab.

 How to use this book?

 This book is mandatory for the completion of the laboratory course. It is a Measure of the

performance of the student in the laboratory for the entire duration of the course.

 Instructions to the students

 Students should carry this book during practical sessions of Computer Science.

 Printouts of the source code and output is not compulsory but optional

 Students should read the topics mentioned in reading section of this Book before

coming for practical.

 Students should solve all exercises which are selected by Practical in-charge as a part of

journal activity.

 Students will be assessed for each exercise on a scale of 5

1) Not done 0

2) Incomplete 1

3) Late complete 2

4) Needs improvement 3

5) Complete 4

6) Well-done 5

Instructions to the practical in-charge

 Explain the assignment and related concepts in around ten minutes using white board if

required or by demonstrating the software.

 Choose appropriate problems to be solved by student.

 After a student completes a specific set, the instructor has to verify the outputs and sign in

the provided space after the activity.

 Ensure that the students use good programming practices.

 You should evaluate each assignment carried out by a student on a scale of 5 as specified

above ticking appropriate box.

 The value should also be entered on assignment completion page of respected lab course.

System Programming and Operating System (Semester-II)

Sr.No. Assignment Name Marks
(out of 5)

Sign

1 Extended Shell (Toy Shell)

2 CPU Scheduling

3 Banker’s Algorithm

4 Demand Paging

5 File Allocation Methods

 Total Out of 25

Assignment 1 : Extended Shell (Toy Shell)

What is Shell?

Shell is an interface between user and operating system. It is the command interpreter, which

accept the command name (program name) from user and executes that command/program.

The command interpreter in Unix/Linux is called as Shell. In Unix core operating system is also

called as kernel.

Shell mostly accepts the commands given by user from keyboard. Shell gets started

automatically when Operating system is successfully started.

 There are various types of shell available on Linux viz. BASH (Bourn Again Shell), CSH (C Shell),

KSH (Kourn Shell), TCSH it is enhanced C Shell.

When shell is started successfully it generally display some prompt to indicate the user that it is

ready to accept and execute the command.

Shell executes the commands either synchronously or asynchronously. When shell accepts the

command then it locates the program file for that command, start its execution, wait for the

program associated with the command to complete its execution and then display the prompt

again to accept further command. This is called as Synchronous execution of shell. In

asynchronous execution shell accept the command from user, start the execution of program

associated to the given command but does not wait for that program to finish its execution,

display prompt to accept next command.

Objective of this practical assignment is to understand how the shell accepts and interpret the

commands given by user and how it executes them and try to simulate our shell in similar

manner.

How Shell Execute the command?

Following are the steps in order how shell execute the given command.

 Accept the command from user.

 Tokenize the different parts of command.

 First part given on the given command line is always a command name.

 Creates (Forks) a child process for executing the program associated with given command.

 Once child process is created successfully then it loads (exec) the binary (executable) image

of given program in child process area.

 Once the child process is loaded with given program it will start its execution while shell is

waiting (wait) for it(child) to complete the execution. Shell will wait until child finish its

execution.

 Once child finish the execution then Shell wakeup, display the command prompt again and

accept the command and continue.

Ex.

$ cat f1.dat f2.dat f3.dat

This command line has four parts 1st is “cat”, 2nd f1.dat, 3rd f2.dat and 4th f3.dat. First part is the

command name which is to be executed.

Commands given to shell are of two types

1) System command

2) Internal commands which are internally coded and implemented by shell.

Additional commands (Extended Commands) to be interpreted and implemented in shell are :

1) count

 It count and display the number of lines, words and characters in a given file.

2) typeline

 It will display the all or number of lines in given file.

3) list

 It will list the files in current directory with some details of files

4) search

 It will allow searching the file for the occurrence of given string/pattern

Implementation of Toy Shell

To implement the shell knowledge of following System calls is essential

fork :

This system call can be used by any process to create the new process called as child process.

The process that creates new process is called as Parent Process while newly created process is

called as Child Process. By default child process is exact copy of parent process. Syntax of this

system call is

int fork()

This system call is available in library file <unistd.h> . This system call returns following values.

1) returns the value 0 to the newly created child process

2) returns Process ID of child process to parent process.

3) returns -1 if fork fail to create child process or on error.

 Both parent and child processes continue executing with the instruction that follows the call to

fork. Fork system call is often followed by exec call.

exec :

Fork creates the new process which is exact copy of parent process. Call the exec will allow a

child process to execute another program. When a process call exec function, that process is

completely replaced by the new program and new program starts its execution from main. That

is exec replaces the current process by new program and starts its execution.

There are several variations of exec function defined in library file <unistd.h>, as

int execl(char *filepath, char *arg0, char *arg1,,(char *)0);

int execv(char *filepath, char *argv[]);

int execlp(char *filename, char *arg0, char *arg1,,(char *)0);

int execvp(char *filename, char *argv[]);

First parameter can be complete path or a program name of the program to be executed.

arg0, arg1, …. are the list of parameters which will be passed as argument to that program.

Instead of passing individual arguments we can pass array of arguments call as argument vector

(argv[])

waitpid :

By using this system call it is possible for parent process to synchronize its execution with child

process. Kernel will block the execution of a Process that calls waitpid system call if a some child

of that process is in execution. It returns immediately when child has terminated by return

termination status of a child. Syntax :

int waitpid(int pid, int *status, int options);

This function is defined in library fil <sys/wait.h>. In our toy shell when shell fork a child process

and exec the given program in child process area then it call waitpid so that child process will

execute and shell will wait for it to finish its execution. Once given command/program finish its

execution it will send signal to parent so that it will finish it wait and continue the execution.

Program Logic

1) Main function will execute and display the command prompt as $

2) Accept the command at $ prompt from user.

3) Separate the different parts of command line.

4) Check that first part is one of the extended commands or not.

5) If the command is extended command then call corresponding functions which is

implementing that command

6) Otherwise fork a new process and then load (exec) a program in that newly created process

and execute it. Make the shell to wait until command finish its execution.

7) Display the prompt and continue until given command is “q” to Quit.

Slot 1

 Answer the following questions after carefully reading the description and program

structure.

 What is Shell and which different shells are available on Linux/Unix platform?

__

__

 What is synchronous and asynchronous execution of shell?

__

__

 What is Process Id?

__

__

 What is the use of fork system call and what are the values retuned by it?

__

__

 What are the arguments to the execvp system call?

__

__

 What is the use of waitpid system call?

__

__

ii. Implement the toy shell program that accepts the command at $ prompt displayed by

your shell (myshell$). Tokenize the command line and execute the given command by

creating the child process. Also implement the additional command count as

 myshell$ count c filename

It will display the number of characters in given file

 myshell$ count w filename

 It will display the number of words in given file

 myshell$ count l filename

 It will display the number of lines in given file

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

Extend the shell to implement the commands as search, typeline, list

 myshell$ search f filename pattern

It will search the first occurance of pattern in the given file

 myshell$ search a filename pattern

It will search all the occurance of pattern in the given file

 myshell$ search c filename pattern

It will count the number of occurance of pattern in the given file

 myshell$ typeline n filename

It will display first n lines of the file.

 myshell$ typeline - n filename

It will display last n lines of the file.

 myshell$ typeline a filename

It will display all the lines of the file.

 myshell$ list n dirname

It will display filenames in a given directory.

 myshell$ list n dirname

It will count the number of entries in a given directory.

 myshell$ list i dirname

It will display filenames and their inode number for the files in a given directory.

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Assignment 2 : CPU Scheduling

CPU Scheduling is one of the important is one of the important task performed by the operating

system. In multiprogramming operating systems many processes are loaded into memory for

execution and these processes are sharing the CPU and other resources of computer system.

Scheduler is a program that decides which program will execute next at the CPU or which

program will be loaded into memory for execution.

CPU scheduler is a program module of an operating system that selects the process to execute

next at CPU out of the processes that are in memory. This scheduler is also called as Short term

scheduler or CPU Scheduler

There are 3 types of schedulers as

1) Short Term Scheduler

2) Long Term Scheduler

3) Medium Term Scheduler

We have to implement various Short Term Scheduling algorithm as a part of this practical

assignment.

Various CPU Scheduling algorithms are :

1) First Come First Serve (FCFS)

2) Shortest Job First (SJF)

3) Priority Scheduling

4) Round Robin Scheduling (RR)

These scheduling algorithms are further classified into 2 types as Preemptive and Non-

Preemptive. FCFS scheduling is always Non-Preemptive while Round Robin is always

Preemptive, while Shortest Job First and Priority Scheduling can be preemptive or non-

preemptive.

The performance of various scheduling algorithms is compared on the basis of following criteria

called as scheduling criteria’s as

1) CPU Utilization 2) Throughput 3) Turnaround Time

4) Waiting Time 5) Response Time

Data Structure

To simulate the working of various CPU scheduling algorithms following data structure is

required.

1) Ready Queue : It represents the queue of processes which ready to execute but waiting

for CPU to become available. Scheduling algorithm will select appropriate process from the

ready queue and dispatch it for execution. For FCFS and for Round Robin this queue is strictly

operated as First In First Out queue. But for Shortest Job First and Priority Scheduling it will

operate as Priority Queue.

2) Process Control Block : It will maintain various details about the each process as processID,

CPU-Burst, Arrival time, waiting time, completion time, execution time, turnaround time, etc. A

structure can be used to define all these fields for processes and we can use array of structures

of size n. (n is number of processes)

1) First Come First Serve Scheduling (FCFS) :

In this algorithm the order in which process enters the ready queue, in same order they will

execute on the CPU. This algorithm is simple to implement but it may be worst several times.

2) Shortest Job First (SJF) :

In this algorithm the jobs will execute at the CPU according their next CPU-Burst time. The job

in a ready queue which has shortest next CPU burst will execute next at the CPU. This algorithm

can be preemptive or non-preemptive.

3) Priority Scheduling (PS) :

In this algorithm the job will execute according to their priority order. The job which has highest

priority will execute first and the job which has least priority will execute last at the CPU.

Priority scheduling can be preemptive or non-preemptive.

4) Round Robin Scheduling (RR) : This algorithm is mostly used in time-sharing operating

systems like Unix/Linux. This algorithm gives the fair change of execution to each process in

system in rotation. In this algorithm each process is allowed to execute for some fixed time

quantum. If process has the CPU-burst more than time quantum then it will execute for the

given time quantum. But if it has CPU-burst less than the time quantum then it will execute for

its CPU-burst time and then immediately release the CPU so that it can be assigned to other

process. The advantage of this algorithm is that the average waiting time is less. It this

algorithm ready queue is strictly operated as First In First Out queue. This algorithm is

intrinsically preemptive scheduling algorithm.

 Slot 1

 Answer the following questions after carefully reading the concept of CPU Scheduling.

 What is CPU Scheduling?

__

__

__

 Define the term ready queue and priority queue. Which scheduling algorithms operate

the queue as priority queue?

__

__

__

 Define the terms turnaround time and waiting time.

__

__

__

 What is CPU-burst and I/O-burst?

__

__

__

 Write the program to simulate FCFS CPU-scheduling. The arrival time and first CPU-burst

for different n number of processes should be input to the algorithm. Assume the fixed

IO waiting time (2 units). The next CPU-burst should be generated randomly. The output

should give Gantt chart, turnaround time and waiting time for each process. Also find

the average waiting time and turnaround time.

 Write the program to simulate Non-preemptive Shortest Job First (SJF) -scheduling. The

arrival time and first CPU-burst for different n number of processes should be input to

the algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

 Write the program to simulate Preemptive Shortest Job First (SJF) -scheduling. The

arrival time and first CPU-burst for different n number of processes should be input to

the algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

 Write the program to simulate Non-preemptive Priority scheduling. The arrival time and

first CPU-burst and priority for different n number of processes should be input to the

algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

Slot 3

 Write the program to simulate Preemptive Priority scheduling. The arrival time and first

CPU-burst and priority for different n number of processes should be input to the

algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

 Write the program to simulate Round Robin (RR) scheduling. The arrival time and first

CPU-burst for different n number of processes should be input to the algorithm. Also

give the time quantum as input. Assume the fixed IO waiting time (2 units). The next

CPU-burst should be generated randomly. The output should give Gantt chart,

turnaround time and waiting time for each process. Also find the average waiting time

and turnaround time.

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Assignment 3 : Banker’s Algorithm

Software Description - This algorithm is related to handling deadlocks. There are three

methods to handle deadlocks.

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

Banker’s algorithm is a technique used for Deadlock Avoidance. A deadlock avoidance algorithm

dynamically examines the resource allocation state of system to the processes to ensure that a

circular-wait condition never exists. The resource allocation state is defined by the number of

available and allocated resources and the maximum demands of the processes. A system is safe

if the system can allocate resources to each process in some order and still avoid a deadlock. i.e.

a system is in a safe state only if there exists a safe sequence. A sequence of processes <P1, P2,

…., Pn> is a safe sequence for the current allocation state if, for each Pi , the resources that Pi can

still request can be satisfied by currently available resources plus the resources held by all the Pj,

with j < i.

Resource allocation graph is a technique used for deadlock avoidance. But the resource allocation

graph algorithm is not applicable to the system with multiple instances of each resource type.

Banker’s algorithm is applicable to such a system.

Banker’s algorithm : When a new process enters the system, it must declare the maximum

number of instances of each resource type that it may need. This number may not exceed the

total number of resources in the system. When a user requests a set of resources, the system

must determine whether the allocation of these resources will keep the system in a safe state. If

it will, then resources are allocated, otherwise the process must wait until some other process

releases enough resources. This includes 2 algorithms

1) resource-request algorithm

2) Safety Algorithm.

Safety Algorithm :

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = 0 for i = 1,2,3, …, n.

2. Find and i such that both:

(a) Finish [i] = 0

(b) Needi Work

If no such i exists, go to step 4.

3. Work=Work+Allocationi

Finish[i]=1

go to step 2.

4. If Finish [i] == 1 for all i, then the system is in a safe state.

Resource-Request Algorithm for Process Pi :

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of

resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources are not

available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

 Available = Available - Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

 If safe the resources are allocated to Pi.

 If unsafe Pi must wait, and the old resource-allocation state is restored

The menu for the program should look like
1. Accept Allocation

2. Accept Max

3. Calculate Need

 4. Accept Available

5. Display Matrices

 6. Accept Request and Apply Banker’s Algorithm

 7. Exit

Choose option by specifying corresponding integer

Data Structure Design:

Let n be the number of processes in the system and m be the number of resource types.

Component Description ‘c’ code

Available A vector of length m indicates the number

of available resources of each type

int Avail[10]

Max An n x m matrix which defines the

maximum demand of each process

int Max[10][10]

Allocation An n x m matrix that defines the number

of resources of each type currently

allocated to each process

int Alloc[10[10]

Need An n x m matrix indicates the remaining

resource need of each process.

int Need[10][10]

Request A vector of length m indicates the request

made by a process Pi

int Request[10]

Finish Vector of length n to check whether the

process finished or not

int Finish[10] ={0}

Work Vector of length m which is initialized to

Available

int Work[10]

Safe Vector of length n initialized to 0 Int Safe[10]= {0};

Control structure – The design is modular. The main module performs necessary

Variable declarations, displays menu and accepts option from user. The structure diagram is as

follows.

Procedural Design – The following is a table of the guidelines for accepting inputs, calculated

need and updating availables, etc as per Banker’s Algorithm and implementation hints.

Procedure Description Programming hints

Bankers main First accept number of

processes and number

of resources.

In a loop

Print options

Read an option

Branch depending on

option

Printf(“enter no. of processes & no. of resources “);

scanf(“%d%d”, &n,&m);

While (option != 9)

{ printoptions();

 scanf(“%d”,&option);
switch(option)

{case 1: ……

}

Accept_matrix

(int A[][10])

A generalized

procedure which will

accept all required

matrices, like

Allocation, Max

depending upon

which matrix is passed

as parameter

Void accept_matrix(int A[][10])

{ int I,j;

for (i=0; i<n;i++)

 for (j=0; j<m;j++)

 scanf(“%d” ,&A[i][j]) ;

}

Accept_availab

le

Accept single

dimentional

array/vector Available

Void Accept_available()

{ int I;

 for (i=0; i<m; i++)

 scanf(“%d” ,&Avail[i]) ;

}

Display_matrix Display Allocation,

Max, Need

Void Display_matrix()

{….

Printf (\n\tAllocation\t\tMax\t\tNeed\n”);

for (i=0; i<n;i++)

 { for (j=0; j<m;j++)

 printf(“%d”,Allocl[i][j]) ;

 printf(“\t);

 for (j=0; j<m;j++)

 printf(“%d”,Maxil[i][j]) ;

 printf(“\t);

 for (j=0; j<m;j++)

 printf(“%d”,Need[i][j]) ;

 printf(“\t);

}

Printf(“\n Available\n”);

for (j=0; j<m;j++)

 printf(“%d”,Avail[i][j]) ;

 printf(“\t);

}

Find_Need Calculate Need matrix Void Find_Need()

{ ….

for (i=0; i<n;i++)

 for (j=0; j<m;j++)

 Need [i,j] = Max[i,j] – Allocation [i,j];
}

Accept_Reques
t

Accept the request for
a process Pi

Void Accept_Request()

{ int i;

Printf(“\nenter process no:”);

Scanf(“%d”,&proc);

 for (i=0; i<m; i++)

 scanf(“%d” ,&Requestl[i]) ;

}
Bankers_algo Invoke

resource_request_alg

o and from it

safety_algo

Bankers_algo()

{

resource_request_algo ();

 }

Safety-algo Find if a safe sequence

exists

Safety_algo()

{ int over =0, i, j, k,l=0, flag;

 //initialize work = available
 for (i=0; i<m; i++)
 work[i] = Avail[i];

 while (!over)
 { // check for any not finished process
 for (i=0; i<n; i++)
 {
 if (Finish[i] ==0)
 { flag =0;
 pno=compare_need(i);
 if(pno>-1)
 break;
 }
 }
 if (i ==n)
 { printf("System is unsafe");
 exit(1);
 }

 if (i < n && pno>=0)
 {

 for (k=0; k<m; k++)
 work[k] += Alloc[pno][k];

 Finish[pno] = 1;
 Safe[l++] = pno; //add process in
safe sequence

 if (l >= n) // if all processes over
 { // print safe sequence
 printf("\n Safe sequence is :");
 for(l=0;l<n; l++)
 printf("P%d\t",Safe[l]);
 over = 1;
 }}
 }
 }

Int
compare_need
(int p)

Checks if need of
process p is <= work
or not. If condition

Int compare_need(int p)
{
 int i,j, flag=0;

true returns process
no else returns -1

 for (j=0;j< nor; j++)
 {
 if (Need[p][j] > work[j])
 { flag =1;
 break; }

 }
 if(flag==0)
 return p;
 return -1;
}

Resource_requ

est_algo

Check if the given

request can be

immediately granted

or not

Resource_request_algo()

{ …

 // check if Requesti <= Needi

for (i=0; i<m; i++)

{

 if Request[i] > Need[proc][i]

 { printf(“error.. process exceeds its Max

demand”); exit(1); }

 }

// check if Reuest [i] <= Available

for (i=0; i<m; i++)

 { if Request[i] > Avail[i]

 { printf(“Process must wait , resources not

available”);

 exit(1); }

}

// pretend to have allocated requested recources

for (i=0; i<m; i++)

{
 Avail[i] = Avail[i] – Request[i];
 Alloc[proc][i] = Alloc[proc][i] + Request[i];

 Need[proc][i] = Need[proc][i] – Request[i]i;
}

//run Safety algorithm to check whether safe

sequence exists or not

Safety_algo();

 }

Slot 1

 Answer the following questions after carefully reading the description and program

structure.

 Give the names of Deadlock handling methods. In which method Banker’s algorithm

technique is used?

__

__

__

 Give the names of the algorithms that are used in Bankers algorithm.

__

__

__

 What does Deadlock Avoidance method ensure?

__

__

__

 Partially implement the Menu driven Banker’s algorithm for accepting Allocation,
Max from user

 Add the following functionalities in your program

 Accept Available

 Display Allocation, Max

 Find Need and Display it

 Display Available

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

 Modify above program so as to include the following:

 Accept Request for a process

 Resource_request algorithm

 Safety algorithm

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Assignment 4 : Demand Paging

Demand paging the one of the most commonly used method of implanting the Virtual Memory

Management scheme. Virtual memory management scheme has the advantages as :

 System can execute the process of larger size than the size of available physical

memory.

 Reduced disk IO operations.

 More numbers of processes can be loaded into memory.

 Performance of multi-programming and multi-tasking can be improved.

In this memory management scheme instead of loading entire process into memory, only

required portion of each process is loaded in memory for execution. Different parts of physical

memory of each process are brought into memory as and when required hence the name is

demand paging.

Each process is logically divided into number of pages. Each page is of same size.

Physical memory (RAM) is also divided into number of equal size frames. Generally size of

frame and a page is same. When process is to be loaded into memory its pages are loaded into

available free frames.

Memory management scheme maintains the list of free frames.

It also maintains the page table for each process. Page table keep track of various frames

allocated to each process in physical memory. That is page table is used to map the logical

pages of a process to frames in physical memory.

Memory Management Unit (MMU) of computer system is responsible to convert the logical

address in process to physical memory in frame.

In demand paging memory management scheme no page of any process in brought into

memory until it not really required. Whenever page is required (demanded) then only it is

brought into memory.

Page Falult :

When process requests some page during execution and that page in not available in physical

memory then it is called as Page Fault.

Whenever page fault occurs Operating system check really it is a page fault or it is a invalid

memory reference. If page fault has occurred then system try to load the corresponding page in

available free frame.

Page Replacement :

When page fault occurs, system try to load the corresponding page into one of the available

free frame. If no free frame is available them system try to replace one of the existing page in

frame with new page. This is called as Page Replacement. Frame selected for page replacement

is as victim frame. Page replacement algorithm of demand paging memory management

scheme will decide which frame will be selected as victim frame. There are various page

replacement algorithms as:

 First In First Out Page Replacement (FIFO)

 Optimal Page Replacement(OPT)

 Least Recently Used Page Replacement (LRU)

 Most Recently Used Page Replacement(MRU)

 Most Frequently Used Page Replacement(MFU)

 Least Frequently Used Page Replacement(LFU)

 Second Change Page Replacement.

Input to Page Replacement Algorithm :

 Reference String : It is the list of numbers which represent the various page numbers

demanded by the process.

 Number of Frames : It represent the number of frames in physical memory.

Ex.

Reference String : 3, 6, 5, 7, 3, 5, 2, 5,7 ,3,2,4,2, 8, 3, 6

It means first process request the page number 3 then page number 6 then 5 and so on.

Data Structure :

 Array of memory frames which is used to maintain which page is loaded in which frame.

With each frame we may associate the counter or a time value whenever page is loaded

in that frame or replaced.

 Array of reference String.

 Page Fault Count.

Output :

The output for each page replacement algorithm should display how each next page is

loaded in which frame.

Finally it should display the total number of page faults.

FIFO :

 In this page replacement algorithm the order in which pages are loaded in memory, in

same order they are replaced.

 We can associate a simple counter value with each frame when a page is loaded in

memory.

 Whenever page is loaded in free frame a next counter value is also set to it.

 When page is to be replaced, select that page which has least counter value.

 It is most simple page replacement algorithm.

OPT :

 This algorithm looks into the future page demand of a process.

 Whenever page is to be replaced it will replace that page from the physical which will

not be required longer time.

 To implement this algorithm whenever page is to be replaced, we compare the pages in

physical memory with their future occurrence in reference string. The page in physical

memory which will not be required for longest period of time will be selected as victim.

LRU :

 This algorithm replaces that page from physical memory which is used least recently.

 To implement this algorithm we associate a next counter value or timer value with each

frame/page in physical memory wherever it is loaded or referenced from physical

memory. When page replacement is to be performed, it will replace that frame in

physical memory which has smallest counter value.

MRU :

 This algorithm replaces that page from physical memory which is used most recently.

 To implement this algorithm we associate a next counter value or timer value with each

frame/page in physical memory wherever it is loaded or referenced from physical

memory. When page replacement is to be performed, it will replace that frame in

physical memory which has greatest counter value.

MRU :

 This algorithm replaces that page from physical memory which is used most recently.

 To implement this algorithm we associate a next counter value or timer value with each

frame/page in physical memory wherever it is loaded or referenced from physical

memory. When page replacement is to be performed, it will replace that frame in

physical memory which has greatest counter value.

MFU :

 This algorithm replaces that page from physical memory which is used most frequently.

 This algorithm is bit complex to implement.

 To implement this algorithm we have to maintain the history of each page that how

many times it is used (frequency count) so far whenever it is loaded in physical memory

or referenced from physical memory. When page replacement is to be performed, it will

replace that frame in physical memory of which frequency count is greatest.

 If frequency count is same for two or more pages then it will apply FCFS.

LFU :

 This algorithm replaces that page from physical memory which is used most frequently.

 This algorithm is bit complex to implement.

 To implement this algorithm we have to maintain the history of each page that how

many times it is used (frequency count) so far whenever it is loaded in physical memory

or referenced from physical memory. When page replacement is to be performed, it will

replace that frame in physical memory of which frequency count is smallest.

 If frequency count is same for two or more pages then it will apply FCFS.

Second Chance Page Replacement :

 This algorithm is also called as Clock replacement policy.

 In this algorithm frames from physical memory are consider for the replacement in

round robin manner. A page that has been accessed in two consecutive considerations

will not be replaced.

 This algorithm is a extension of FIFO page replacement.

 To implement this algorithm we have to associate second chance bit to each frame in

physical memory. Initially when a page is loaded in memory its second chance bit is set

to 0. Each time a memory frame is referenced set the second chance bit to 1.When page

replacement it to be performed access the memory frames in round robin manner. If

second chance bit is 1 then reset it to 0. If second chance bit is zero then replace the

page with that frame.

 This algorithm gives far better performance than FCFS page replacement.

Slot 1

 Answer the following questions after carefully reading the concept of Virtual memory,

demand paging and page replacement algorithm examples.

 Define the terms Virtual Memory and Demand Paging.

__

__

__

__

 What is page fault and page replacement?

__

__

__

 Write the simulation program to implement demand paging and show the page

scheduling and total number of page faults for the following given page reference string.

Give input n as the number of memory frames.

Reference String : 12,15,12,18,6,8,11,12,19,12,6,8,12,15,19,8

 Implement FIFO

 Implement LRU

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2 :

 Write the simulation program to implement demand paging and show the page

scheduling and total number of page faults for the following given page reference string.

Give input n as the number of memory frames.

Reference String : 12,15,12,18,6,8,11,12,19,12,6,8,12,15,19,8

 Implement OPT

 Implement MFU

 Implement LFU

Slot 3 :

 Write the simulation program to implement demand paging and show the page

scheduling and total number of page faults for the following given page reference string.

Give input n as the number of memory frames.

Reference String : 2,5,2,8,5,4,1,2,3,2,6,1,2,5,9,8

 Implement MRU

 Implement Second Chance Page Replacement.

 Attempt each of the above algorithm with different reference string.

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Assignment 5 : File Allocation Methods

Files are managed by the operating system on secondary storage devices. Hard disk drive is

most commonly used storage device.

Physically hard disk is divided into number sectors also called as blocks. When a file is to be

created the free blocks on the disk are allocated to the file.

Operating system maintains the status of each block. Status of disk block can be

 Free

 Allocated

 Reserved

 Bad

Purpose of this practical assignment is to understand various file allocation methods and their

implementation.

When user accesses any file, the system has to locate all the disk blocks of that file on disk.

Hence operating system has systematic way to maintain, allocate the blocks for each file and

releasing the blocks of file when it is deleted.

File Allocation Method is a method that specifies how the blocks allocated to file are

maintained so that file can be accessed properly. Most commonly used file allocation methods

are

 Contiguous File Allocation

 Linked File Allocation

 Indexed File Allocation

Contiguous File Allocation :

 This file allocation method is also called as Sequential file allocation.

 In this method blocks allocated the file are contiguous. That is if file is of n blocks then

all the n blocks are adjacent to one another.

 Advantage of this method is that the file can access sequentially as well as randomly.

 Directory maintains the file name along with starting block number and length (that is

number of blocks allocated to file).

 Drawback of this method is that there can be external fragmentation problem and file

cannot grow efficiently.

Linked File Allocation :

 In this method n blocks file are maintained as chain (linked list) of n blocks. First block

of file contains the address or link to second block of file. Second block of file contains

the address or link to third of file as so on. Last block of file points to null. That any free

block on the storage device can be allocated to the file.

 Advantage of this method is that the file can grow or shrink dynamically and there is no

external fragmentation.

 Directory maintains the file name along with starting block number and last block

number of a file.

 Drawback of this method is that the file can be access sequentially only. Random file

accessing is not possible and wastage of memory for pointer in each block of a file.

Index File Allocation :

 This method overcomes the drawbacks of Sequential File Allocation method as well as

Linked Allocation Method.

 In this method a special Index Block is maintained for each file. This block contains the

list of block numbers allocated to the file. When file is to be accessed the index block

will give the list of blocks allocated to that file.

 Hence in this method file can be accessed sequentially as well as randomly.

 Each available free block on disk can be allocated to any file on demand and that

number is added to the index block of that file.

 Directory maintains the file name along with its index block number and number of

entries in it.

 Drawback of this method is the overhead of maintaining index block.

Data Structures :

 Bit Vector :

It is used to maintain the free space on disk. It is a vector of size n (where n is number of

blocks on disk) with values 0 or 1. These values mark the status of block as whether it is

free or allocated. For Ex. It bit vector is :

00111010001101…….

It means that first 2 blocks are allocated, block 3,4,5 are free, 6th is allocated, 7th free, 8th

to 10th are not free, 11th and 12th are free and so on.

 Directory :

Each directory entry maintains the filename along with certain details relevant to file

allocation method. Directory list can be maintained statically or dynamically.

For Contiguous allocation each directory entry contains filename, starting block number

and length. Likewise for each file allocation method appropriate details are maintained

in directory entry.

Implementation :

 A bit vector(array) of size n which is initialized randomly to 0 or 1.

 A menu with the options

 Show Bit Vector

 Create New File

 Show Directory

 Delete File

 Exit

 When Create New File option is selected the program should ask the file name along

with number of blocks to allocate to the file. According the free blocks should be

searched by using the bit vector and allocated to the file. A new directory entry shall be

added in directory list along with appropriate details.

 When Delete File option is selected the program should ask the file name. Release the

blocks allocated to the file. Accordingly update the bit vector and remove the entry from

directory.

Slot 1

 Answer the following questions after carefully reading the concept File Allocation

Methods

 What is File allocation method?

__

__

__

 Define the term External Fragmentation in the context of file allocation methods.

__

__

__

 What is index block?

__

__

 Write a program to simulate Sequential(Contiguous) file allocation method. Assume disk

with n number of blocks. Give value of n as input. Write menu driver program with

menu options as mentioned above and implement each option.

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

 Write a program to simulate Linked file allocation method. Assume disk with n number

of blocks. Give value of n as input. Write menu driver program with menu options as

mentioned above and implement each option.

 Write a program to simulate Indexed file allocation method. Assume disk with n number

of blocks. Give value of n as input. Write menu driver program with menu options as

mentioned above and implement each option.

Assignment Evaluation

__

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

